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　　Abstract　　Secondary instabilities of linearly heated falling f ilms are studied through three steps.Firstly , the analysis of the prim ary

linear instabilit y on Miladinova' s long w ave equation of the linearly heated f ilm is performed.Secondly , the similar Landau equation is de-
rived through w eak nonlinear theory , and a tw o-dimensional nonlinear saturat ion solution of primary ins tability i s obtained w ithin the w eak

nonlinear domain.T hirdly , the secondary (th ree-dimensional)instabilit y of the tw o-dimensional wave is studied by the Floquet theorem.
Our secondary instabilit y analysi s shows that the Marangoni number has destabi lization effect on the secondary instabilit y.

　　Keywords:　linearly heated falling film , secondary instabil ity , Floquet theorem.

　　Since Kapitza experimentally studied the film

flow on an inclined plane[ 1 ,2] , the mechanics of film
instability has been extensively studied theoretically ,
from linearity to nolinearity , and from isothermal to

heated film .By linear instability analysis , the surface
and shear modes have been identified for iso thermal

film s , though the surface mode is dominant w hen the
inclined angle is not very small.However , for uni-
form ly heated film , there ex ists another two types of
thermocapillary instability.As for nonlinear instabili-
ty , weakly nonlinear analysis has show n that there
exist supercritical and subcritical instabilit ies below a

cutof f w avenumber.Detailed discussions can be found
in the review papers by Chang[ 3] and Oron et al.[ 4] ,
and also references therein.

Recent ly , more and more studies are concerned
w ith falling films on a non-uniformly heated plate.
Kali tzova et al.[ 5] first analysed the linear long-wave
instability of thin liquid layer on a linearly heated

plate.They investigated the Marangoni effect on the
magnitude of the critical Reynolds number.Miladino-
va et al.[ 6] extended the problem to the fini te-ampli-
tude long-wave instabili ties of tw o-dimensional films.
They derived a long-wave nonlinear evolution equa-
tion based on the Benney' s approach[ 7] and conf irmed
the existence of permanent finite-amplitude w aves of
different kinds.Their linear stability analy sis on the
evolution equation also show s that the temperature

decrease along the plate can stabilize the film f low .

Joo and Davis[ 8] reported a secondary instability

analysis on the isothermal falling film s in 1992.They
examined the spatially synchronous instabili ty in three

steps:(i)primary linear instability on the undis-
turbed surface;(ii)nonlinear equilibration of primary
instability into two-dimensional fini te-amplitude per-
manent w ave;(iii)secondary(three-dimensional)in-
stability of the tw o-dimensional w ave.In this paper ,
we w ill extend M iladinova' s long-wave equation to
the secondary instabili ties of the linearly heated films

in the same three steps.

1　Primary instability and nonlinear satura-
tion

A thin liquid layer falling down from a vertical

linearly heated plate is schemat ically show n in Fig.1.
The film has a mean thickness d , and is bounded by
a motionless passive gas wi th the ambient temperature

T g and pressure p g.The free surface is assumed adia-

batic.The liquid is New tonian with constant density
ρ, kinematic viscosity νand thermal diffusivi ty κ.
The surface tension σdepends linearly on the temper-
ature T :

σ=σ0 -γ(T -T g), (1)
where σ0 is the mean surface tension at temperature
T g , and γ=-dσ/d T is a positive constant for most

common liquids.The origin is located on the plate
surface , where the temperature is equal to T g.The
w all temperature Tw is given by



Fig.1.　Schematic diagram of a linearly heated vert ically falling

film.

Tw = T g +Ax , (2)

and it increases(decreases)in the streamwise direc-
tion w ith a positive (negative)constant gradient A .
The characteristic length l in the st reamw ise or span-
w ise direction(propo rt ional to a typical wavelength of
the interface)is much larger than d.Miladinova et
al.[ 6] have shown that using the Benney' s long-wave
theory the local film thickness h(x , y , t)can be rep-
resented as a nonlinear evolution equation:

h t +(Gh -Mn)hh x +ε
2
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where x and y , scaled by l , are streamwise and
spanwise coordinates , h and t are scaled by d and

ld/ν, respectively. is a 2D g radient operato r

( x ,  y), ε=d/ l 1.In Eq.(3), G is the

Reynolds number ,

G =
gd

3

ν
2 , (4)

where g is the g ravi tational acceleration.The surface
tension σis measured by

S =ε2
ρσ0d
3μ2

, 　or　F =SG
-
1
3 , (5)

where μ=ρνis the dynamic viscosity , F is indepen-
dent of the mean thickness d ;and Mn is represented

by

Mn =
Ma
Pr
, (6)

where Ma and Pr are the M arangoni number and the

Prandtl number , respectively , def ined by

Ma =γAd
2

μκ
, 　Pr=ν

κ
. (7)

As described by Joo and Davis
[ 8]
, the second

term in Eq.(3)is nonlinear , which describes the
propagation , and local steepening of disturbance

w aves.The third term in Eq.(3)describes the mean
f low , and is responsible for the surface wave instabili-
ty.The fourth term (or the first term in the last

square bracket)in Eq.(3)describes the Marangoni
ef fects on the surface w ave instability .The last term
describes the stabilizing capillary effects.

The basic state fo r the primary instability is a u-
niform undisturbed one.We impose an infinitesimal
harmonic disturbance

h(x , y , t)=1+δ0exp[ i(k · r -ωt)] , (8)

where the disturbed amplitude δ0 1 , and the

w avenumber vecto r k=(kcosφ, k sinφ), φ is the
angle of the oblique w ave propagating in the (x , y)-
plane.Substi tuting Eq.(8)into the evolution equa-
tion Eq.(3), we can obtain the linearized phase
speed cL , and the linear g row th rate ωi , the imagi-
nary part of ω,

cL =G -Mn , (9)

ωi=εk
2 2
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2 . (10)

Roskes[ 9] pointed out that fo r the case of

Mn=0 , namely , fo r isothermal f ilms , the three-di-
mensional oblique wave can be reduced into a two-di-
mensional one by a simple coo rdinate rotation(replace
Gcosφby G , and set  y=0).However , it is impos-
sible fo r the case of Mn ≠0.In the following discus-
sion , we only study the situation of φ=0.Acco rding
to Eq.(10), we can obtain the critical Reynolds
number Gc and the critical wavenumber kc ,

Gc =a + a
2
+b , (11)

k c =
D
S
, (12)

where
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25
16
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25
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15
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2 ,

(13)
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2
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2.

(14)
And the maximum linear grow th rate occurs at

k =km=kc/ 2.
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For isothermal film flow , the w eakly nonlinear
analy sis predicts that the evolut ion of the tw o-dimen-
sional w aves depends st rongly on the initial w avenum-
ber k

[ 10—12]
.There exists a value of ksu , the f low is

supercritically stable and nonlinear saturation occurs
af ter the initial linear instability when k su<k <k c;
and the nonlinearity , on the other hand , promo tes
the instability and the saturation does not occur w hen

0<k <k su (subcrit ical bifurcation).In the supercri t-
ical region , for a w avenumber k close to kc , the solu-
tion evolves into a stable , almost sinusoidal w ave of
small finite amplitude , and for k close to km , the sur-
face w ave approaches the form of a solitary w ave , as
observed in experiments.These conclusions above
have been verified by numerical simulations based on

the Benney ' s long-wave approximat ion[ 13] .In this
sect ion , the same w eakly nonlinear analysis as Gje-
vik' s

[ 8]
w ill be ex tended to non-isothermal film .

Applying the w eakly nonlinear theory , the f ree
surface evolut ion can be well approximated by the

fundamental w ave and its few low est harmonics

h(x , t)=1+∑
N

n=1
A n(t)e

i knx +c.c., (15)

where c.c.denotes complex conjugate.Subst ituting
Eq.(15)into Eq.(3)by set ting N=2 , we obtain a
minimal representation

A
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2
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2
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2
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2
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+γ2|A 2|
2
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where the dot denotes derivative wi th respect to time ,
superscript ＊denotes complex conjugate and the co-
ef ficients αi , βi and γi(i=1 , 2)are listed in the Ap-
pendix.We assume that  An ～ O(ε

n)and ε 1 ,
thus

A
·
1 =α1 A1 +β1A

＊
1 A2 +γ1|A 1|

2
A 1 +O(ε5),

(18)

A
·
1 =α2A 2 +β2 A

2
1 +O(ε4). (19)

It is convenient to set A1= B 1exp(iθ1), A 2=
B 2exp(iθ2), and  = θ2-2θ1 , where B i , θi
(i=1 ,2)and  are real functions of time.Then
Eqs.(18)and (19)can be reduced into a system of

real nonlinear dif ferential equations

B
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1 =α1rB1 +[ β1rcos -β1isin ] B 1B 2

+γ1rB
3
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2
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where subscripts r and i denote the real and imaginary

parts , respectively.There exists a non-trivial steady solu-

tion by setting B
·
1 =B

·
2 = 

·
=0 , which is as follows:
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, (24)

 =π+arctan(β2i/ β2r), (25)
where  lies in the second quadrant.From Eq.(23),
we can obtain the existing condit ion
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>0. (26)

Because  β1i β2i   β1r β2r ,  β1i β2i   γ1rα2r , and
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which can result in k su<k <k c , and k su=kc/2.In a
reference f rame x′moving w ith a nonlinear phase ve-
locity c , the flow is steady and the f ree surface can be
expressed as

 h(x′)=1 +2[ B 1cos(kx′)+B 2cos(2kx′+ )] ,

(28)

-kc=θ
·
1=α1i+(β1rsin +β1icos )B 2

+γ1iB
2
1+O(ε

4
). (29)

Figs.2 and 3 show features of the saturated

nonlinear 2D-permanent w ave f rom Eqs.(23)—(25)
w ith dif ferent Mn values w hen G=5 , F =1 ,
ε=0.1 , and Pr=10.From Fig.2 w e can see that
w ith the increasing of Mn , the maximum ampli tudes
 An of the permanent w ave become larger for

k su<k <k c.The amplitude A1 of the fundamental

mode increases rapidly and reaches a maximum befo re

k reaches km(Fig.2(a)), and the magni tude  A2 
of the harmonic mode increases monotonically and be-
comes dominant near k =k su (Fig .2(b))as k de-
creases f rom k c.In our w eakly nonlinear analysis , we
assume that  A 2   A 1 , and therefore the perma-
nent w ave in Eq.(28)is only valid in that case.We
can easily see f rom Fig .2 that the condition is not sat-
isf ied near k =k su.In Fig.3 , the nonlinear phase ve-
loci ty is plo tted and the results at k =k c are equal to
G -Mn , which satisf ies the linear analysis.Near
k =k c the phase speed decreases w ith the decreasing
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of k , and reaches a minimum , after which it increases
and reaches a maximum near ksu.For isothermal film
flow , our results are the same as that of Joo and Davis[ 8] .

Fig.2.　M agnitudes of (a)mode A 1 and(b)mode A2 versus the

wavenumber k wi th di fferent Mn values.G=5 , F=1 , ε=0.1 ,
Pr=10.

Fig.3.　Nonlinear phase speed c versus the w avenumber k w ith

dif ferent Mn values.G=5 , F=1 , ε=0.1 , Pr=10.

If we release the condition  A2   A1 to

 A 2 ～  A 1 , but the higher o rder An is still very
small , then Eqs.(20)—(22)can be changed to

B
·
1 =α1rB1 +[ β1rcos -β1isin ] B 1B 2

+γ1rB
3
1 +2γ1rB1B

2
2 , (30)

B
·
2 =α2rB2 +[ β2rcos +β2isin ] B

2
1

+2γ2rB
2
1B 2 +γ2rB

3
2 , (31)

 
·
=[ β2icos -β2rsin ] B

2
1/ B2

-2[ β1icos +β1rsin ] B 2

+2(γ2i-γ1i)B
2
1+(γ2i-4γ1i)B

2
2. (32)

Fig.4.　The nonlinear saturat ion of the fundamental w ave and

secondary harmonic with di fferent w avenumbers. Mn=0.02 ,
G=5 , F=1 , ε=0.1 , Pr=10.

The non-t rivial solution of Eqs.(30)—(32)can be
easily obtained using Runge-Kutta method.Fig.4
show s that the final solutions converge to the steady

ones for k =1.0 , 1.2 , when tw o different initial val-
ues of B 1=0.025 , 0.05 , B 2=-0.0001 ,  =0.
These results are compared w ith those calculated f rom

Eqs.(20)—(22)(Fig .2), and the relative error is
w ithin 1.5%.It should be pointed out that w hen k
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decreases near k su , such as k =0.8 , the steady solu-
tion dose no t exist.

Fig.5.　The nonlinear saturat ion by numerical computation to the

long wave equation w ith w avenumber k=1.2. Mn=0.02 ,
G =5 , F=1 , ε=0.1 , Pr=10.

Another w ay to obtain the finite-amplitude per-
manent w ave and confirm the nonlinear saturation is

to pose an initial-value problem in a periodic domain

and integ rate the evolut ion equation(3)numerically.
M iladinova et al.[ 6] have performed a lo t of calcula-
tions wi th dif ferent values of k and Mn on an in-
clined plate (the inclined angle is π/4).Similar nu-
merical simulations , as show n in Figs.5 and 6 , of

the finite-amplitude permanent w ave on the vertical
plate are carried out using the Runge-Kutta-Verner
fif th-order and sixth-o rder method for the time inte-
gration , and using the Fourier-spect ral method for
the spatial discretization[ 14] .

Fig.6.　The nonlinear satu ration by numerical computation to the
long w ave equation wi th w avenumber k =1.0. Mn=0.02 ,

G=5 , F=1 , ε=0.1 , Pr=10.

2　Secondary three-dimensional instability

We now study the secondary stability of two-di-
mensional permanent w aves to infinitesimal three-di-
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mensional disturbances.The basic state  h for the sec-
ondary instability is steady in a frame moving with

the nonlinear phase speed c.Therefore , if we rew rite
Eq.(3)using a coordinate transformation x′=
x -ct , the resulting equation allow s a solution of the
form

h = h(x′)+δ[ H(x′)e
i ly+σt

+c.c.] , (33)
where δis the initial small amplitude , l is the span-
w ise w avenumber , and σis the linear g row th rate of
the three-dimensional disturbance.

We substitute Eq.(33)into Eq.(3)and lin-
earize in δto obtain the follow ing linear eigenvalue
problem for H(x′)and σ:
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εS

H =0 , (34)

where prime denotes differentiation and IV deno tes

fourth deriv ative w ith respect to x′.The coef ficients
in Eq.(34)are periodic in x′, and the Floquet theo-
rem allow s us to express the solution of Eq.(34)as

H =e
iλkx′∑

N

n=-N
cn e

i knx′
, (35)

where H(x′)represented by the finite Fourier sum
has the same period 2π/ k as the coef ficients of Eq.
(34)and λis the Floquet exponent.If λ=0 , the
eigenfunction H has the same period as the base state

 h , and w e are led to study the synchronous solutions
w ith w aveleng th 2π/ k , as perfo rmed by Orszag and

Patera[ 15] for w all-bounded shear flows.If λ=±
1
2
,

the principal subharmonic solutions can be studied , the
same as Herbert' s studies[ 16] on plane channel flow.

2.1　Secondary synchronous instability (λ=0)

It is proved that H in Eq.(34)can be replaced
by i ts complex conjugate H

＊.So H +H
＊ is also the

solut ion of Eq.(34), which means the eigenfunction

of Eq.(34)is real.Thus H is expressed as the real

Fourier form for λ=0:

H =
a0
2
+a1cos(kx′)+b1sin(kx′)

+a2cos(2kx′)+b2sin(2kx′). (36)
Substi tuting Eq.(36)into Eq.(34)and integ rating
it in a period domain 2π/k with weighted functions

1 , cos(kx′), sin(kx′), cos(2kx′), and sin(2kx′),
we can obtain a 5×5 real-eigenvalue matrix problem.
The eigenvalues σare then obtained from the result-
ing fif th-degree characteristic equation.The results
are given in Figs.7—11 wi th all kinds of parameters.
For isothermal film , our results are the same as that
of Joo and Divas[ 8] .

In Fig.7 , when the temperature increases along
the plate , the film flow of the secondary instability

becomes mo re unstable , i.e.the g row th rate σand
the cutof f spanwise w avenumber l c increase.In
Fig.8 , when the streamwise w avenumber reduces to
k =km , the g row th rate of the secondary instability
becomes larger.In Fig.9 , the ef fect of Reynolds
number is the same as the isothermal case:as the
mean layer thickness (o r G)increases , the g row th
rate and the cutoff spanw ise w avenumber lc increase.

Fig.7.　Grow th rates of the three-dimensional synchronous insta-
bility versus the spanw ise w avenumber w ith dif ferent M arangoni

numbers.G =5, F=1 , ε=0.1 , Pr=10 , k=km.

Fig.8.　Grow th rates of the three-dimensional synchronous insta-

bility versus the spanw ise wavenumber w ith di fferent st reamw ise

w avenumbers.Mn=0.02 , G=5 , F=1 , ε=0.1 , Pr=10.
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Fig.9.　Growth rates of the three-dimensional synchronous insta-
bilit y versus the spanwise w avenumber w ith dif ferent Reynolds

numbers.Mn=0.02 , F=1 , ε=0.1 , Pr=10 , k =km.

Fig.10.　Cutoff disturbance w avenumber l c of the th ree-dimen-

sional synchronous instabilit y versus Reynolds number w ith diff erent

Marangoni numbers.F=1 , ε=0.1 , Pr=10 , k =k m.

Fig.11.　Cutoff disturbance w avenumber l c of the th ree-dimen-

sional synchronous instabilit y versus Marangoni number.G=5 ,

F=1 , ε=0.1, Pr=10 , k =k m.

In Fig .10 , when the Marangoni number is not
zero , the critical value of G is not zero either , be-
cause there is not an unconditional instability of the

tw o-dimensional w aves now.Points A and B are the
critical Reynolds number w ith the values of 0.023853
and 0.628853 , corresponding to Mn=0.02 and

Mn =-0.02 , respect ively , for both the primary in-
stability and the secondary synchronous instability.
The curve in Fig.11 is exactly a line according to our
computation , which also show s that the M arangoni
number has destabilization ef fect on the secondary in-

stability.

2.2　Secondary subharmonic instability λ=±
1
2

Similar to the analysis of secondary synchronous

instability above , H is expressed as real Fourier form

fo r λ=±
1
2
:

H =a1cos(kx′/2)+b1sin(kx′/2)
+a2cos(3kx′/2)+b2sin(3kx′/2).(37)

Substi tuting Eq.(37)into Eq.(34)and integ rating
it in a period domain 4π/k with weighted functions

coskx′/2 , sin(kx′/2), cos(3kx′/2), and

sin(3kx′/2), we can obtain a 4×4 real-eigenvalue
matrix problem.The eigenvalues σcan also be ob-
tained easily f rom the resulting fourth-degree charac-
teristic equation.Figure 12 shows the grow th rates of
the three-dimensional subharmonic instability versus
the spanw ise w avenumber for different values of

M arangoni number , st reamw ise wavenumber , and
Reynolds number.We can see that there exist tw o
modes of three-dimensional subharmonic instability:
one is surface w ave instability w ithin the long w ave

domain , the o ther is thermocapillary instability wi th-
in moderate w avenumber.The grow th rates of the
two modes both increase wi th the increasing of the

M arangoni number.Fo r surface w ave instability , the
increase of Reynolds number and the decrease of

st reamw ise w avenumber make the grow th rate in-
crease , which is the same as the secondary syn-
chronous instability .But fo r thermocapillary instabili-
ty , the increase of Reynolds number and the decrease
of st reamw ise w avenumber make the grow th rate de-
crease , which show s that the increase of inertia w eak-
ens the thermocapillary instability .

3　Conclusion

In this paper , secondary instabili ties of linearly
heated falling films are studied by three steps.First
the analysis of the primary linear instability on the

undisturbed surface is perfo rmed;then the similar
Landau equation is obtained through nonlinear satura-
tion of primary instability into tw o-dimensional fini te-
ampli tude permanent w ave;the secondary (three-di-
mensional)instability of the tw o-dimensional wave is
studied by the Floquet theorem .This paper identif ies
the existence of secondary synchronous instability and

secondary subharmonic instabili ty , and also investi-
gates their g row th rates with the spanw ise w avenum-
ber for dif ferent values of M arangoni number ,
st reamw ise w avenumber and Reynolds number.
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Fig.12.　Grow th rates of the th ree-dimensional subharmonic instability versus the spanw ise w avenumber for dif ferent values of Marangoni
number , streamwise w avenumber and Reynolds number for F=1 , ε=0.1 , Pr=10.(a)G=5 , k=km;(b)G=5 , Mn=0.02;(c)

Mn=0.02 , k=km;(d)Mn=0.02 , k=1.2.

Appendix:Coefficients of Eqs.(16)and (17)

α1=-ik(G-Mn)+k 2ε
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