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Abstract

Secondary instabilities of linearly heated falling films are studied through three steps. Firstly, the analysis of the prim ary

linear instability on Miladinovd s bng wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is de-

rived through weak nonlnear theory, and a tw o-dimensional nonlinear saturation solution of primary instability is obtained within the weak

nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.

Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.

Keywords:

Since Kapitza experimentally studied the film

(12 the mechanics of film

flow on an inclined plane
instability has been extensively studied theoretically,
from linearity to nolinearity, and from isothermal to
heated film. By linear instability analysis, the surface
and shear modes have been identified for isothermal
films, though the surface mode is dominant when the
inclined angle is not very small. However, for uni-
formly heated film, there exists another two types of
thermocapillary instability. As for nonlinear instabili-
ty, weakly nonlinear analysis has shown that there
exist supercritical and subcritical instabilities below a
cutoff wavenum ber. Detailed discussions can be found
in the review papers by Chang!® and Oron et al.!¥,
and also references therein.

Recently, more and more studies are concerned
with falling films on a non-uniformly heated plate.
Kalitzova et al.!” first analysed the linear long-wave
instability of thin liquid layer on a linearly heated
plate. They investigated the Marangoni effect on the
magnitude of the critical Reynolds number. Miladino-
va et al.'% extended the problem to the finite-ampli-
tude long-w ave instabilities of tw o-dimensional films.
They derived a long-wave nonlinear evolution equa-
tion based on the Benney’ s approach!” and confirmed
the existence of permanent finite-amplitude waves of
different kinds. Their linear stability analysis on the
evolution equation also shows that the temperature
decrease along the plate can stabilize the film flow .

linearly heated falling film secondary instability. Floquet theorem.

Joo and Davis'¥ reported a secondary instability

analysis on the isothermal falling filmsin 1992. They
examined the spatially synchronous instability in three
steps: (i) primary linear instability on the undis-
turbed surface; (i) nonlinear equilibration of primary
instability into two-dimensional finite-amplitude per-
manent wave; (iii ) secondary (three-dimensional ) in-
stability of the two-dimensional wave. In this paper,
we will extend Miladinova’ s long-wave equation to
the secondary instabilities of the linearly heated films
in the same three steps.

1 Primary instability and nonlinear satura-
tion

A thin liquid layer falling down from a vertical
linearly heated plate is schematically shown in Fig. 1.
The film has a mean thickness d, and is bounded by
a motionless passive gas with the ambient tem perature
Ty and pressure p,. The free surface is assumed adia-
batic. The liquid is New tonian with constant density
0, kinematic viscosity Vv and thermal diffusivity k.
The surface tension 6 depends linearly on the temper-
ature T

6= 00— Y(T— Ty, (1
where 0¢ is the mean surface tension at tem perature
Tes and Y=—do/d T is apositive constant for most
common liquids. The origin is located on the plate
surface, where the temperature is equal to Tg. The
wall temperature T, is given by
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Schematic diagram of a linearly heated vertically falling

Ty= Ty,+ Ax, 2
and it increases (decreases) in the streamwise direc-
tion with a positive (negative) constant gradient A4 .
The characteristic length / in the streamw ise or span-
wise direction (proportional to a typical wavelength of
the interface) is much larger than d. Miladinova et
al.'9 have shown that using the Benney’ s long-wave
theory the local film thickness 4 (x, y, ¢) can be rep-

resented as a nonlinear evolution equation:

h+ (Gh— Mn) hh o+ e[%GIr‘hx(Gh— Mn >]

+€V°[%Pr°Mn o pt %Gh—Mn]Vh
+Sh3vv2h] +0H =0, 3

where x and y, scaled by /, are streamwise and
spanwise coordinates, h and ¢ are scaled by d and

ld/ v,

respectively. V is a 2D gradient operator

(3, 9, e=d/I<<1. In Eq. (3), G is the
Reynolds number,
3
G= gf’T, @

where g is the gravitational acceleration. The surface
tension 0 is measured by
2 Poo d
3’
where #= Ovis the dynamic viscosity, F is indepen-

_1
S =c« or F= SG 3, (5

dent of the mean thickness d; and Mn is represented

by
Mn = (6)

where Ma and Pr are the M arangoni number and the
Prandtl number, respectively, defined by

_y4d’

Ma i

. Pr=-". (7
K

As described by Joo and Davis ¥, the second

term in Eq. (3) is nonlinear, which describes the

propagation,
waves. The third term in Eq. (3) describes the mean

and local steepening of disturbance

flow, and is responsible for the surface wave instabili-
ty. The fourth term (or the first term in the last
square bracket) in Eq. (3) describes the Marangoni
effects on the surface wave instability . The last term
describes the stabilizing capillary effects.

The basic state for the primary instability is a u-
niform undisturbed one. We impose an infinitesimal
harmonic disturbance

h(x,y, t) =1+ Qexp[itk °r— wt)], (8)
® <1, and the

wavenumber vector k= (kcos®P, ksin®), ¢ is the

where the disturbed amplitude

angle of the oblique wave propagating in the (x, y)-
plane. Substituting Eq. (8) into the evolution equa-
tion Eq. (3), we can obtain the linearized phase
speed c1, and the linear growth rate w;, the imagi-

nary part of w,

o= G— Mn, ©9)
wi= ekz[ % G(G— Mn)cos> o K°S

+2 G Mapr—LPean’] . a0)

Rosked? pointed out that for the case of
Mn=0, namely, for isothermal films, the three-di-
mensional oblique wave can be reduced into a two-di-
mensional one by a simple coordinate rotation (replace
Gcos® by G, and set 3=0). However, it is impos-
sible for the case of Mn70. In the following discus-
sion, we only study the situation of $=0. According
to Eq. (10), we can obtain the critical Reynolds

number Gc and the critical wavenumber ke,

Ge=a+Ja + b an

_ D
kc_ Jg9 (12)

w here
a=— %%[Pr_% Mn, b= 14—5PVMI12,
(13)
D= 2G(G— M)+ >G* MnPr— Sprn>.
15 12 2
(14)

And the maximum linear growth rate occurs at

k= kn=k/ 2.



For isothermal film flow, the weakly nonlinear
analy sis predicts that the evolution of the two-dimen-
sional waves depends strongly on the initial wavenum-

[ 10—12]
ber &
supercritically stable and nonlinear saturation occurs
after the initial linear instability when ko Ak;
and the nonlinearity, on the other hand, promotes

. There exists a value of ksu, the flow is

the instability and the saturation does not occur when
0< k< kw (subecritical bifurcation). In the supercrit-
ical region, for a wavenumber k close to k., the solu-
tion evolves into a stable, almost sinusoidal wave of
small finite amplitude, and for £ close to ks the sur-
face wave approaches the form of a solitary wave, as
observed in experiments. These conclusions above
have been verified by numerical simulations based on
the Benney’ s long-wave approximation''?. In this
section, the same weakly nonlinear analysis as Gje-
vik’ § ¥ will be extended to non-isothermal film .

Applying the weakly nonlinear theory, the free
surface evolution can be well approximated by the
fundamental wave and its few lowest harmonics

N
e 0 = 14+ 25 4, (D™ + c.c.. A5)

n=1
where c. c. denotes complex conjugate. Substituting
Eq. (15) into Eq. (3) by setting N=2, we obtain a

minimal representation

A1 =1 A1+ BlAl*AZ"_ Y1 141 P4

+2v 142 Pay, 16)
A2:a2A2+BzA%+2Y2 ‘Al |2A2
+ 7 | 4, P4, an

w here the dot denotes derivative with respect to time,
superscript  * denotes complex conjugate and the co-
efficients a;, [;and ¥; (i=1, 2) are listed in the Ap-
pendix. We assume that | 4,] ~0O(€") and €<,
thus

A= a1A1+B1A1*A2+ Y 14, Pa,+ o),

a8

41= wdrtBdi+0H. a9

It is convenient to set A1= Biexp(ifh), A=
Bzexp(iez), and = 0,—20,, where Bj; 6

(i=1,2) and ¢ are real functions of time. Then
Egs. (18) and (19) can be reduced into a system of
real nonlinear differential equations
Bi1= a1, B; +[ Bicos®— Busin®] B 1B
+71B] + 0 (&), 0

Z}z = o, By+ [ Barcosd 1 Baisin?] B? + 0(eh),
QD

$= [ Bacos$ — Barsin $] BT/ B, +0(eH, (22)
where subscripts r and i denote the real and imaginary
parts respectively. There exists a non-trivial steady solu-
tion by setting B = By = $= 0, which is as follows:

I
A X 2
B — . 2
l {BerZr_BliBZi_ Veriz] (23)
C a BED?
B2 B B BB e @)
$ = x4 arctan(B2/ B s (25)
where ¢ lies in the second quadrant. From Eq. (23),

we can obtain the existing condition

L =0 (26)
BirBar— Biifai— Viraor ’

Because | BiiBal >t BiBals | BuBal >t vivand, and
B1iB2>0, thus a1rg2=_0, i.e.

222 2,1 272]
[ISG 15GMn[l 8Pr] S PrMn”— k°S

8,2 8 _ 25
X[ISG 15GMn[l 8Pr]
—2PrMn2—16k25] <0 Q7)

which can result in k< Ak and ko= ke/2. Ina
reference frame x ' moving with a nonlinear phase ve-
locity ¢, the flow is steady and the free surface can be
expressed as

ii(x)=1+2 Bicostkx )+ Bacoskx' + )1,
(28)

—ke= é1:a11+ (Bi,sin ¢+ Bricos B>
+YuB1+ O (. (29)

Figs. 2 and 3 show features of the saturated
nonlinear 2D-permanent w ave from Eqs. (23)—(25)
with different Mn values when G=5, F=1,
€=0.1, and Pr=10. From Fig. 2 we can see that
with the increasing of Mn, the maximum amplitudes
| A, of the permanent wave become larger for

k< k< k.. The amplitude | 4| of the fundamental

mode increases rapidly and reaches a maximum before
k reaches k., (Fig.2(a)), and the magnitude | 45
of the harmonic mode increases monotonically and be-
comes dominant near k=ky (Fig.2(b)) as k de-
creases from k.. In our weakly nonlinear analysis we
assume that | A2/ <\ 41l, and therefore the perma-
nent wave in Eq. (28) is only valid in that case. We
can easily see from Fig.2 that the condition is not sat-
ified near k=/kq. InFig. 3, the nonlinear phase ve-
locity is plotted and the results at k=k. are equal to
G— Mn, which satisfies the linear analysis. Near
k= k. the phase speed decreases with the decreasing



of k, and reaches a minimum, after which it increases +2(Y2i— Vi )B%Jr (Yoi— 4 Yii )Bi_ (32)

and reaches a maximum near kw. For isothermal. [ﬁgl]m The non-trivial solution of Eqs. (30)—(32) can be
flow, our results are the same as that of Joo and Davis ™ . easily obtained using Runge-Kutta method. Fig.4

shows that the final solutions converge to the steady

0.07
o ones for k=1.0, 1.2, when two different initial val-
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decreases near k«, such as k=0.8, the steady solu-
tion dose not exist.

Another way to obtain the finite-amplitude per-
manent wave and confirm the nonlinear saturation is
to pose an initial-value problem in a periodic dom ain
and integrate the evolution equation (3) numerically.
Miladinova et al.'® have performed a lot of calcula-
tions with different values of & and Mn on an in-
clined plate (the inclined angle is ©/4). Similar nu-
merical simulations, as shown in Figs. 5 and 6, of

(d)
Fig. 5. The nonlinear saturation by numerical computation to the
long wave equation with wavenumber k=1.2. Mn=0.02

G=5 F=1, &=0.1, Pr=10.

the finite-amplitude permanent wave on the vertical
plate are carried out using the Runge-Kutta-Verner
fifth-order and sixth-order method for the time inte-

gration, and using the Fourier-spectral method for
[ 14]

the spatial discretization

1.05

= .00}

Fig. 6.
long wave equation with wavenumber k=1.0. Mn=0.02
G=5 F=1, ¢=0.1, Pr=10.

The nonlinear saturation by mumerical computation to the

2 Secondary three-dimensional instability

We now study the secondary stability of two-di-
mensional permanent waves to infinitesimal three-di-



mensional disturbances. The basic state 7 for the sec-
ondary instability is steady in a frame moving with
the nonlinear phase speed c¢. Therefore, if we rewrite
Eq. (3) using a coordinate transformation x'=

x—ct, the resulting equation allows a solution of the
form

h=n(x)H+ JHGD "+ e, 33
where Ois the initial small amplitude, [ is the span-
wise wavenumber, and o is the linear growth rate of
the three-dimensional disturbance.

We substitute Eq. (33) into Eq. (3) and lin-
earize in O to obtain the following linear eigenvalue
problem for H(x") and o,

7 ! /4 2
RHEY+ 32y 25

3
155"

M _& 2_LPrMn2 A2 3.
s {P’ 25h 2 s " 2’]7“1
" 15 ! ZSGM}'I 7& 4 !
+3ﬁh+ R R [Pr 25}%5
4PrMn 2 _c
3y h ﬁgh sS
31%%] H/+[3(h B 4 4G 53 (h 30%
25GMI’Z 7& 451!
JF—IZS [Pr ] (h"h )
— 2PrlM” 2o~ My
S sS
PrMn

G J—
29 [ Gh— M’J_’_SS] H=0, €7y

where prime denotes differentiation and IV denotes
fourth derivative with respect to x'. The coefficients
in Eq. (34) are periodic in x ', and the Floquet theo-
rem allows us to express the solution of Eq. (34) as

H= " iNcn e, (35
where H (x ) represented by the finite Fourier sum
has the same period 2/ k as the coefficients of Eq.
(34) and A is the Floquet exponent. If A=0, the
eigenfunction H has the same period as the base state
h, and we are led to study the synchronous solutions
with wavelength 2t/ k, as performed by Orszag and

Pateral ™ for wall-bounded shear flows. If A= +L

2’
the principal subharmonic solutions can be studied, the

same as Herbert’ s studied ™ on plane channel flow.

2.1 Secondary synchronous instability (A=0)

It is proved that H in Eq (34) can be replaced
by its complex conjugate H . So H+ H " is also the
solution of Eq. (34), which means the eigenfunction

of Eq. (34) is real. Thus H is expressed as the real
Fourier form for A=0:;

= % + aycos Gex' )+ bysinCkx')

+ azcos2kx' )+ basin(kx).  (36)
Substituting Eq. (36) into Eq. (34) and integrating
it in a period domain 2t/k with weighted functions
1. cos(kx'), sinCkx ), cos(2kx '), and sin(2kx'),
we can obtain a 5X 5 real-eigenvalue matrix problem.
The eigenvalues o are then obtained from the result-
ing fifth-degree characteristic equation. The results
are given in Figs. 7—11 with all kinds of parameters.

For isothermal film, our results are the same as that
of Joo and Divad ¥ .

In Fig.7, when the temperature increases along
the plate, the film flow of the secondary instability
becomes more unstable, i.e. the growth rate ¢ and
the cutoff spanwise wavenumber /. increase. In
Fig. 8, when the streamwise wavenumber reduces to
k=km, the growth rate of the secondary instability
In Fig.9, the effect of Reynolds
number is the same as the isothermal case: as the
mean layer thickness (or G) increases, the growth
rate and the cutoff spanwise wavenumber /. increase.

becomes larger.
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Fig. 7. Growth rates of the three-dimensional synchronous insta-
bility versus the spanwise wavenumber with different M arangoni

numbers. G=5 F=1, ¢=0.1, Pr=10, k= ky.
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Growth rates of the three-dimensional synchronous insta-
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Fig. 11.
sional synchronous instability versus Marangoni number. G=35,
F=1, ¢=0.1 Pr=10, k=k,.

Cutoff disturbance wavenumber /_ of the three dimen-

In Fig. 10, when the Marangoni number is not
zero, the critical value of G is not zero either, be-
cause there is not an unconditional instability of the
tw o-dimensional waves now. Points A and B are the
critical Rey nolds number with the values of 0. 023853
and 0. 628853,

Mn=—0.02, respectively, for both the primary in-

corresponding to Mn=0.02 and

stability and the secondary synchronous instability.
The curve in Fig. 11 is exactly a line according to our
computation, which also shows that the M arangoni
number has destabilization effect on the secondary in-

stability.

2.2 Secondary subharmonic instability [)\: i‘%]

Similar to the analysis of secondary synchronous
instability above, H is expressed as real Fourier form

for A= i%;
H =aicos(kx'/2)~+ bisin(kx'/2)

+ azeosBkx '/ 2)+ basin(3kx'/2). (37)
Substituting Eq. (37) into Eq. (34) and integrating
it in a period domain 4t/k with weighted functions
coskx /2, sin Ckx '/ 2), cos Gkx '/2), and
sin(3kx'/2), we can obtain a 4X4 real-eigenvalue
matrix problem. The eigenvalues ¢ can also be ob-
tained easily from the resulting fourth-degree charac-
teristic equation. Figure 12 shows the growth rates of
the three-dimensional subharmonic instability versus
the spanwise wavenumber for different values of
streamwise wavenumber, and
Reynolds number. We can see that there exist two

M arangoni number,

modes of three-dimensional subharmonic instability:
one is surface wave instability within the long wave
domain, the other is thermocapillary instability with-
in moderate wavenumber. The growth rates of the
two modes both increase with the increasing of the
M arangoni number. For surface wave instability, the
increase of Reynolds number and the decrease of
streamwise wavenumber make the growth rate in-
crease, which is the same as the secondary syn-
chronous instability . But for thermocapillary instabili-
ty, the increase of Reynolds number and the decrease
of streamw ise wavenumber make the growth rate de-
crease, which shows that the increase of inertia w eak-
ens the thermocapillary instability .

3 Conclusion

In this paper, secondary instabilities of linearly
heated falling films are studied by three steps. First
the analysis of the primary linear instability on the
undisturbed surface is performed; then the similar
Landau equation is obtained through nonlinear satura-
tion of primary instability into tw o-dimensional finite-
amplitude permanent wave; the secondary (three-di-
mensional) instability of the two-dimensional wave is
studied by the Floquet theorem. This paper identifies
the existence of secondary synchronous instability and
secondary subharmonic instability, and also investi-
gates their growth rates with the spanwise wavenum-
ber for different values of Marangoni number,
streamw ise wavenumber and Reynolds number.
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Appendix: Coefficients of Eqs. (16) and (17)

oq:—ik(G—MnH—kze[%Gz
_ 2 _ 25 _ 1 2 2 ]
15GMn 1 8Pr 2PrMn kS|,
B =—ik(QQG— Mn)+ kzs[ %GZ
— %GMn 1—%5Pr —2PrMn2—21sz] \
i :—ikG—l—kzs[ZGz—%GMn 1—2§5Pr

— 3PrMn* — 3k2S] ,

azz—zik(G—Mn>+k2e[f—5G2

— 18—5 GMn| 1— 2§5Pr — 2PrMn” — 16k2S] .

By=—ik(2G — Mn)+k2€[ 8 52

5
— %GMn 1— %SPr — 4PrMn*— 6k2s] ,
vzz—zikG+k2e[8G2—g—6GMn 1—28—5Pr

—12PrMn*— 48k25] )
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